职务职称:教授,博士生导师 |
|
所在单位:材料加工工程与自动化系 |
联系电话: |
电子邮箱:chunlei_qiu@buaa.edu.cn |
办公地点:教学1号楼312室 |
个人主页: /info/1054/2560.htm |
|
|
Ø 基本情况:
邱春雷,男,教授、博士生导师。于2010年获得英国伯明翰大学冶金与best365英国体育在线博士学位。2011~2016年在伯明翰大学从事研究员工作。2016~2017年任职于英国卡迪夫大学工程学院助理教授。过去十余年主要从事先进近净成形技术研究,包括激光增材制造及热等静压近净成形技术。在钛合金、高温合 金、铝合金、高熵合金、钛铝合金、Invar合金、不锈钢、难熔金属等的激光增材制造成形性、激光材料交互作用、凝固行为、缺陷形成机理、微观结构演变规律及力学行为等方面开展了大量研究工作。突破了大型航空钛合金结构件 激光增材制造应力变形和缺陷控制,成功制备出多个大型航空部件和结构件, 突破多种难成形高性能铝合金和高熵合金的增材制造成形,开发出多种新型高强高塑钛合金、铝合金和高熵合金。曾作为项目负责人承担了国家重点研发计划项目等。在Acta Materialia, Additive Manufacturing等期刊上发表50多篇SCI论文,他引3500多次,H因子26,拥有美国发明专利1项,英国发明专利1项,中国发明专利6项。
Ø 主讲课程:
本科生课程:《先进航空航天制造技术》、《课堂设计》
Ø 研究方向:
(1)金属激光增材制造及修复
(2)粉末热等静压近净成形
(3)高温合金、钛合金及铝合金
(4)新型高性能复杂合金的设计与开发
Ø 教学科研成果:
发明专利:
(1)邱春雷,陈旭,孙鹏越,增材制造的具有超高屈服强度和高塑性的亚稳态β钛合金,中国发明专利,专利号:ZL202111127782.1,申请日期:2021.09.26,授权日期:2022.05.06
(2)邱春雷,一种原位合成纳米氧化物颗粒弥散强化合金的方法, 中国发明专利,专利号:ZL201811243447.6,申请日期:2018.10.24,授权日期:2020.12.15
(3)邱春雷,一种基于粉末再加工的热等静压近净成形方法,中国发明专利,专利号;ZL201810375751.X,申请日期:2018.04.25,授权日期:2020.06.05
(4)邱春雷,刘彦君,许珑缤,具有完全等轴晶组织和超高屈服强度的钛合金,中国发明专利,申请号:202210493527.7,申请日期:2022.04.27
(5)邱春雷,陈旭,刘彦君,一种用于增材制造的温度可控制样基台,中国发明专利,申请号:202210773610.X,申请日期:2022.07.01
(6)邱春雷,王志超,许珑缤,一种抑制增材制造铝合金裂纹形成并促进晶粒细化的方法, 中国发明专利,申请号:202111567671.2,申请日期:2021.12.21
(7)Christopher Smith, Chunlei Qiu, Moataz M.M. Attallah, Stefan Simeonov Dimov, Method of Remanufacturing a Cylinder Head, JUSTIA patent(美国专利), publication number 20180178327, 2018.
(8)Christopher Smith, Chunlei Qiu, Moataz M.M. Attallah, Stefan Simeonov Dimov, Khamis Essa, Method of Remanufacturing a Cylinder Head, UK Patent (英国专利),publication number GB2558274, 2018.
代表性论文:
[1] Y.J. Liu, L.B. Xu, C.L. Qiu*. Development of an additively manufactured metastable beta titanium alloy with a fully equiaxed grain structure and ultrahigh yield strength. Additive Manufacturing, 60 (2022) 103208.
[2] Z.C. Wang, X.T. Wang, X. Chen, C.L. Qiu*. Complete columnar-to-equiaxed transition and significant grain refinement in an aluminium alloy by adding Nb particles through laser powder bed fusion. Additive Manufacturing 51 (2022) 102615.
[3] X. Chen, C.L. Qiu*. Development of a novel metastable beta titanium alloy with ultrahigh yield strength and good ductility based on laser power bed fusion. Additive Manufacturing 49 (2022) 102501.
[4] X.Y. Pan, C.L. Qiu*. Promoting columnar-to-equiaxed transition in AlCoCrFeNi high entropy alloy during selective laser melting by adding Cr3C2, Materials Research Letters 10 (2022) 788–796.
[5] X.Y. Pan, C.L. Jia, C.L. Qiu*. On the stress rupture behaviour and deformation mechanism of an advanced hot-extruded nickel-based superalloy. Journal of Alloys and Compounds 926 (2022) 166804.
[6] X.T. Wang, F.J. Qu, C.L. Qiu, On the Microstructural Evolution and Cracking Behavior of a Titanium Aluminide Alloy During Selective Laser Melting. 3D Printing and Additive Manufacturing 00 (2023) 00.
[7] X.Y. Pan, C.L. Jia, Z.Y. Ji, C.L. Qiu*. Microstructural evolution and dynamic recrystallization mechanism of a heavily-alloyed nickel-based superalloy during hot extrusion. Journal of Materials Research and Technology. 2023, in press.
[8] H.H. Liu, X.Y. Pan, P.Y. Sun, Y.J. Liu, C.L. Qiu*. Influence of Addition of Ti Particles and Processing Condition on Microstructure and Properties of Selectively Laser-Melted Invar 36 Alloy. 3D Printing and Additive Manufacturing00 (2022) 00.
[9] X.Y. Pan, C.L. Qiu*. Influence of quasi-crystal particles and processing condition on microstructure and tensile properties of a selective laser melted high entropy alloy. Vacuum 205 (2022) 111480.
[10] X.T. Wang, X.Y. Pan, P.Y. Sun, C.L. Qiu*. Significant enhancement in tensile strength and work hardening rate in CoCrFeMnNi by adding TiAl particles via selective laser melting. Materials Science & Engineering A 831 (2022) 142285.
[11] C.L. Qiu*, Y.J. Liu, H.H. Liu. Influence of addition of TiAl particles on microstructural and mechanical property development in Invar 36 processed by laser powder bed fusion. Additive Manufacturing 48 (2021) 102457.
[12] P.Y. Sun, C.L. Qiu*. Influence of addition of TiAl particles on microstructural and mechanical property development in a selectively laser melted stainless steel. Materials Science & Engineering A 826 (2021) 141925.
[13] C.L. Qiu*, Q. Liu, R.G. Ding. Significant enhancement in yield strength for a metastable beta titanium alloy by selective laser melting. Materials Science & Engineering A 816 (2021) 141291.
[14] Q. Liu, C.L. Qiu*. On the role of dynamic grain movement in deformation and mechanical anisotropy development in a selectively laser melted stainless steel. Additive Manufacturing 35 (2020) 101329.
[15] X. Chen, C.L. Qiu*. In-situ development of a sandwich microstructure with high strength and enhanced ductility by laser reheating of a laser melted titanium alloy. Scientific Reports 10 (2020) 15870.
[16] Q. Liu, C.L. Qiu*. Variant selection of a precipitation in a beta titanium alloy during selective laser melting and its influence on mechanical properties. Materials Science & Engineering A 784 (2020) 139336.
[17] G.Q. Wang, Q. Liu, H. Rao, H.C. Liu, C.L. Qiu*. Influence of porosity and microstructure on mechanical and corrosion properties of a selectively laser melted stainless steel. Journal of Alloys and Compounds 831 (2020) 154815.
[18] C.L. Qiu*. A new approach to synthesise high strength nano-oxide dispersion strengthened alloys. Journal of Alloys and Compounds 790 (2019) 1023-1033.
[19] C.L. Qiu*, H.X. Chen, Q. Liu, S. Yue, H.M. Wang. On the solidification behaviour and cracking origin of a nickel-based superalloy during selective laser melting. Materials Characterization 148 (2019) 330–344.
[20] C.L. Qiu*, Q. Liu. Multi-scale microstructural development and mechanical properties of a selectively laser melted beta titanium alloy. Additive Manufacturing 30 (2019) 100893.
[21] C.L. Qiu*, Z. Wang, A.S. Aladawi, M.A. Kindi, I.A. Hatimi, H. Chen, L. Chen. Influence of laser processing strategy and remelting on surface structure and porosity development during selective laser melting of a metallic material. Metallurgical and Materials Transactions A 50 (2019) 4423-4434.
[22] C.L. Qiu*, M.A. Kindi, A.S. Aladawi, I. A. Hatmi. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Scientific Reports 8 (2018) 7785.
[23] P.W. Liu, Y.Z. Ji, Z. Wang, C.L. Qiu, A.A. Antonysamy, L.Q. Chen, X.Y. Cui, L. Chen. Investigation on evolution mechanisms of site-specific grain structures during metal additive manufacturing. Journal of Materials Processing Technologies 257 (2018) 191-202.
[24] C.L. Qiu*, N.J.E. Adkins, M.M. Attallah. Selective Laser Melting of Invar 36: Microstructure and Properties. Acta Materialia 103 (2016) 382-395.
[25] N. D’Souza, J. Kelleher, C.L. Qiu, S.Y. Zhang, S. Gardner, R. E. Jones, D. Putman, C. Panwisawas. The Role of Stress Relaxation and Creep during High Temperature Deformation in Ni-base Single Crystal Superalloys - Implications to Strain build-up during Directional Solidification. Acta Materialia 106 (2016) 322-332.
[26] C.L. Qiu*, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Materialia 96 (2015) 72-79.
[27] M.M. Attallah, L.N. Carter, C.L. Qiu, N. Read, W. Wang. Microstructural and Mechanical Properties of Metal ALM. Book chapter in L. Bian, N. Shamsaei, J. Usher (editors): Laser-Based Additive Manufacturing of Metal Parts: Modeling, Optimization,and Control of Mechanical Properties, 2017, CRC Press.
[28] C. Cai, B. Song, C.L. Qiu*, L. Li, P. Xue, Q.S. Wei, J. Zhou, H. Nan, H. Chen, Y.S. Shi. Hot isostatic pressing of in-situ TiB/Ti-6Al-4V composites with novel reinforcement architecture, enhanced hardness and elevated tribological properties. Journal of Alloys and Compounds 710 (2017) 364-374.
[29] C.L. Qiu*, N. D’Souza, J. Kelleher, C. Panwisawas. An experimental investigation into the stress and strain development of a Ni-base single crystal superalloy during cooling from solidification. Materials and Design 114 (2017) 475-483.
[30] C. Panwisawas, C.L. Qiu, M. J. Anderson, Y. Sovani, R. P. Turner, M. M. Attallah, J. W. Brooks, H. C. Basoalto. Mesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolution. Computational Materials Science 126 (2017) 479-490.
[31] C.L. Qiu*, A. Fones, N.J.E. Adkins, H. Hamilton, M.M. Attallah. A new approach to develop Pd modified Ti-based alloys for biomedical application. Materials and Design 109C (2016) 98-111.
[32] G.A. Ravi, C.L. Qiu*, M.M. Attallah. Microstructural control in a Ti-based alloy by changing laser processing mode and power during direct laser deposition. Materials Letters 179 (2016) 104-108.
[33] H. Hassanin, K. Essa, C.L. Qiu, A.M. Abdelhafeez, N.J.E. Adkins, M.M. Attallah. Net-shape manufacturing using hybrid selective laser melting/hot isostatic pressing. Rapid Prototyping Journal 23 (2017) 720-726.
[34] C.L. Qiu*, N.J.E. Adkins, H. Hassanin, M.M. Attallah, K. Essa. In-situ shelling via selective laser melting: modelling and microstructural characterisation. Materials and Design 87 (2015) 845-853.
[35] C.L. Qiu*, G.A. Ravi, M.M. Attallah. Microstructural Control during Direct Laser Deposition of a b-Titanium Alloy (Ti5553). Materials and Design 81 (2015) 21-30.
[36] C. Panwisawas, C.L. Qiu, Y. Sovani, J.W. Brooks, M.M. Attallah, H.C. Basoalto. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scripta Materialia 105 (2015) 14-17.
[37] C.L. Qiu*, Y. Sheng, N.J.E. Adkins, M. Ward, H. Hassanin, M.M. Attallah, P.D. Lee, P.J. Withers. Influence of processing conditions on strut structure and compressive property of cellular lattice structures fabricated by selective laser melting. Materials Science and Engineering A 628 (2015) 188-197.
[38] C.L. Qiu*, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, M.M. Attallah. Fabrication of large Ti-6Al-4V structures by direct laser deposition. Journal of Alloys and Compounds 629 (2015) 351-361.
[39] C.L. Qiu*, N.J.E. Adkins, M.M. Attallah. Microstructure and tensile properties of laser-melted and of HIPed laser-melted Ti-6Al-4V. Materials Science and Engineering A 578 (2013) 230-239.
[40] C.L. Qiu*, X.H. Wu. High cycle fatigue and fracture behaviour of a hot isostatically pressed nickel-based superalloy. Philosophical Magazine 94 (2013) 242-264.
[41] C.L. Qiu*, X.H. Wu, J.F. Mei, P. Andrews, W. Voice. Influence of heat treatment on microstructure and tensile properties of a hot isostatically pressed nickel-based superalloy. Journal of Alloys and Compounds 578 (2013) 454-464.
[42] Z.W. Wu, C.L. Qiu, V. Venkatesh, H. Fraser, R. Williams, G.B. Viswanathan, M. Thomas, S. Nag, R. Banerjee, M.H. Loretto. The Influence of Precipitation of Alpha2 on Properties and Microstructure in TIMETAL 6-4. Metallurgical and Materials Transactions A 44 (2013) 1706-1713.
[43] C.L. Qiu*, P. Andrews. On the formation of irregular-shaped gamma prime and serrated grain boundaries in a nickel-based superalloy during continuous cooling. Materials Characterization 76 (2013) 28-34.
[44] C.L. Qiu*, M.M. Attallah, X.H. Wu, P. Andrews. Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder. Materials Science and Engineering A 564 (2013) 176-185.
[45] L. Liu, C.L. Qiu, C.Y. Huang, Y. Yu, H. Huang, S.M. Zhang. Biocompatibility of Ni-free Zr-based bulk metallic glasses. Intermetallics. 17 (2009) 235–240.
[46] L. Liu, C.L. Qiu*, Q. Chen, K.C. Chan, S.M. Zhang. Deformation behaviour, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses. Journal of Biomedical Materials Research - Part A. 86 (2008) 1160-1169.
[47] L. Liu, K.C. Chan, C.L. Qiu, Q. Chen. Formation and biocompatibility of Ni-Free Zr60Nb5Cu20Fe5Al10 bulk metallic glass. Materials Transactions. 48 (2007) 1879-1882.
[48] L. Liu, C.L. Qiu*, M. Sun, Q. Chen, K.C. Chan, G.K.H. Pang. Improvements in the plasticity and biocompatibility of Zr-Cu-Ni-Al bulk metallic glass by the micro-alloying of Nb. Materials Science and Engineering A. 448-451 (2007) 193-197.
[49] C.L. Qiu*, Q. Chen, L. Liu, K.C. Chan, J.X. Zhou, P.P. Chen, S.M. Zhang. A novel Ni-free Zr-based bulk metallic glass with enhanced plasticity and good biocompatibility. Scripta Materialia, 55 (2006) 605-608.
[50] L. Liu, C.L. Qiu*, Q. Chen, S.M. Zhang. Corrosion behaviour of Zr-based bulk metallic glasses in different artificial body fluids. Journal of Alloys and Compounds. 425 (2006) 268-73.
[51] L. Liu, M. Sun, Q. Chen, B. Liu, C.L. Qiu. Crystallization, mechanical and corrosion properties of Zr-Cu-Ni-Al-Nb bulk glassy alloys. Acta Physica Sinica. 55 (2006) 1930-1935.
[52] C.L. Qiu*, L. Liu, S. Min, S.M. Zhang. The effect of Nb addition on mechanical properties, corrosion behaviour, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid. Journal of Biomedical Materials Research - Part A. 75 (2005) 950-956.
[53] L. Liu, C.L. Qiu*, H. Zou. The effect of the micro-alloying of Hf on the corrosion behaviour of ZrCuNiAl bulk metallic glass. Journal of Alloys and Compounds. 399 (2005) 144-148.
[54] B. Liu, L. Liu, M. Sun, C.L. Qiu, Q. Chen. Influence of Cr micro-addition on the glass forming ability and corrosion resistance of Cu-based bulk metallic glasses. Acta Metallurgica Sinica. 41 (2005) 738-742.